

Supporting Information

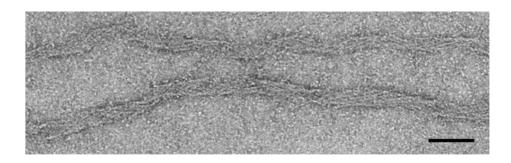
© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Intramolecular charge interactions as tool to control the coiled coil to amyloid transformation

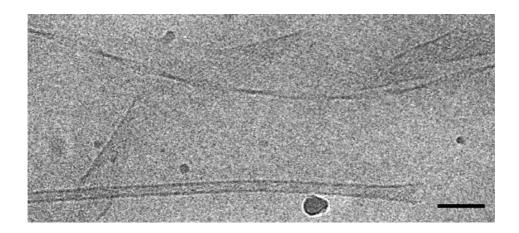
Kevin Pagel, [a]+ Sara C. Wagner, [a]+ Raheleh Rezaei Araghi, [a] Hans v. Berlepsch, [b] Christoph Böttcher, [b] and Beate Koksch [a]*

[a] Institute for Chemistry and Biochemistry

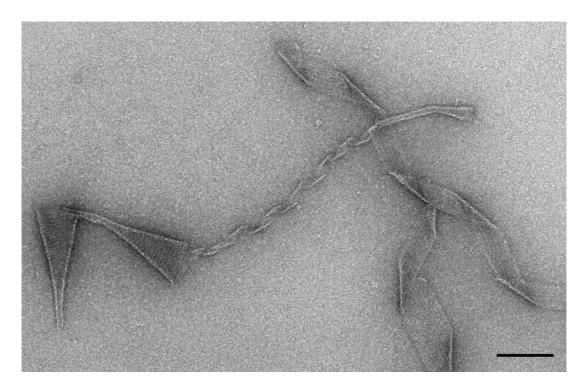
Freie Universität Berlin


Takustrasse 3, 14195 Berlin (Germany)

[b] Research Centre for Electron Microscopy


Freie Universität Berlin

Fabeckstrasse 36a, 14195 Berlin (Germany)


A: Additional-TEM images.

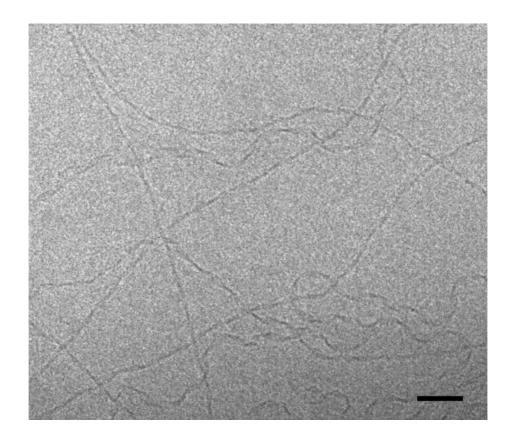

Figure SA1. TEM micrograph of PTA-stained amyloid fibrils formed by peptide A (600 μ M) at pH 4.0 (10 mM acetate buffer). The protofilament substructure is visible. Scale bar: 50 nm.

Figure SA2. Cryo-TEM micrograph of a 375 μ M solution of peptide B at pH 7.4 (10 mM Tris/HCl buffer) showing different types of amyloid fibrils. Ribbons of variable width and a tubule are evident. Scale bar: 50 nm.

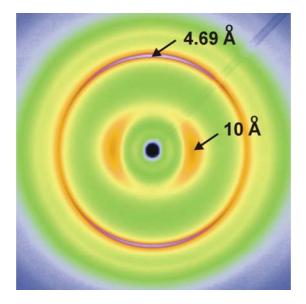
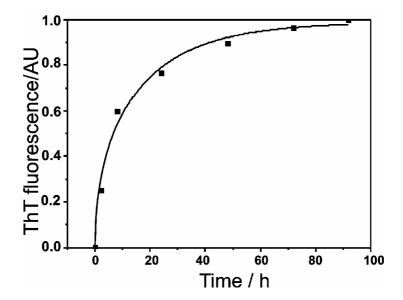
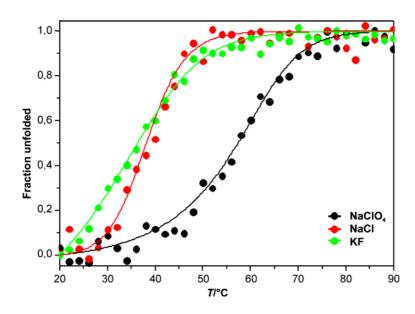


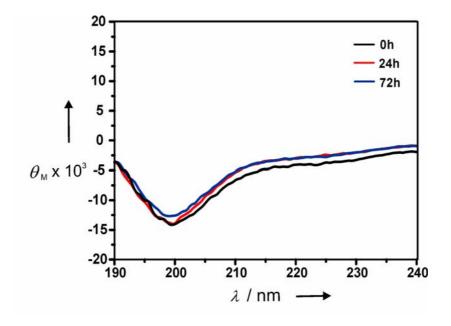
Figure SA3. TEM micrograph of UAc-stained amyloid fibrils formed by peptide B (160 μ M) at pH 7.4 (10 mM Tris/HCl buffer). The protofilament substructure is visible. Scale bar: 100 nm.


Figure SA4. Cryo-TEM micrograph of a 300 μ M solution of peptide C at pH 4.0 (10 mM acetate buffer) showing stiff and curly amyloid fibrils, respectively. Scale bar: 50 nm.

B: x-ray studies.


Figure SB1. 2D WAXS pattern from partially aligned dried fibril sample of peptide A. The fibril axis is vertical.

C: Kinetic studies.


Figure SC1. ThT staining assay of peptide C (200 μ M) at pH 7.4 and 4°C. The fluorescence intensity is given after normalization so that the final fluorescence intensity at the endpoint of the kinetic trace was 100%. The resulting plot of fluorescence intensity was fit to a single-exponential function FL=a-bexp(-rt) using the Origin Software (version 7.0, Microcal, USA).

D: Thermal denaturation experiments.

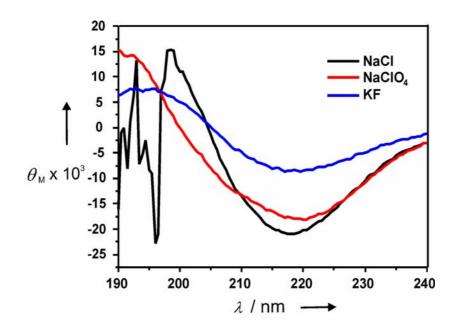
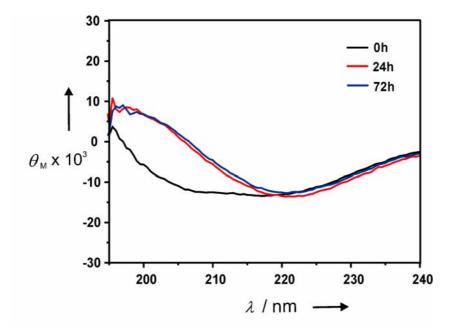


Figure SD1. CD denaturation profiles of peptide C at 50 μ M and pH 7.4 (10 mM Tris/HCl buffer) in the presence of 3 M salt. 3 M guanidine hydrochloride were added as denaturation reagent.


E: Additional CD spectra.

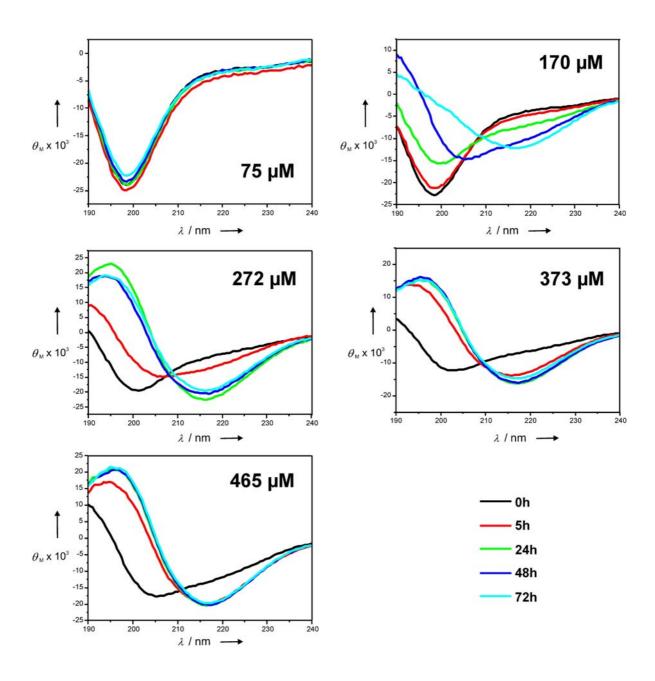

Figure SE1. CD spectra of 250 μM peptide A at pH 4.0 (10 mM acetate buffer).

Figure SE2. CD spectra of 69 μ M peptide C at pH 7.4 (10 mM Tris/HCl buffer) in the presence of 1 M salt. Spectra were taken immediately after dissolution of the peptide.

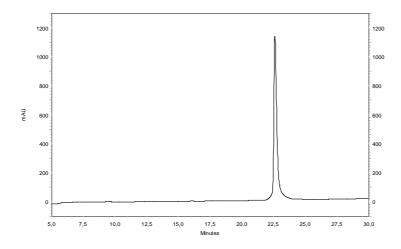


Figure SE3. CD spectra of 95 μ M peptide C at pH 7.4 (10 mM Tris/HCl buffer) in the presence of 3 M NaClO₄.

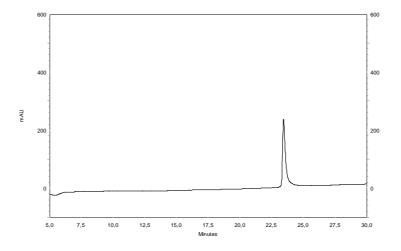
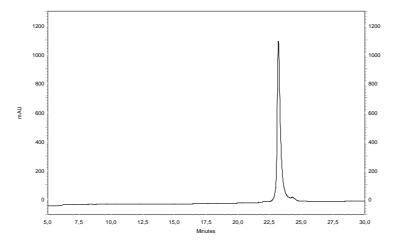


Figure SE4. CD spectra of peptide B at pH 7.4 (10 mm Tris/HCl buffer) and different concentrations.


F: HPLC Data

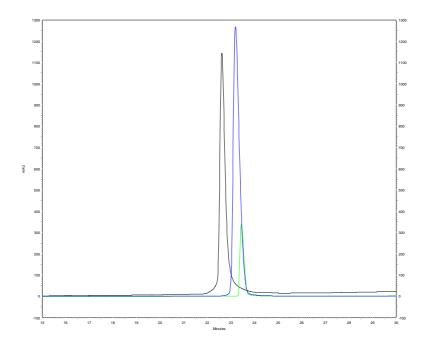

Figure SF1: HPLC Chromatogram of 150 μ M peptide A (t_r = 22.6 minutes).

Figure SF2: HPLC Chromatogramm of 150 μ M peptide B ($t_r = 23.2$ minutes).

Figure SF3: HPLC Chromatogramm of 150 μ M peptide B (t_r = 23.4 minutes).

Figure SF4: Magnified HPLC Chromatograms of peptides A (black), B (green), and C (blue) at peptide concentration of 150 μM. The purity of all three peptides was >95%.

Preparative and analytical HPLC was performed at a flow rate of 1 mL min⁻¹ using the following gradient and columns.

Gradient:	Solvent A	H ₂ O, 0.1% (v/v) Trifluoroacetic acid
	Solvent B	Acetonitrile, 0.1% (v/v) Trifluoroacetic acid
	0 min	95% A
	30 min	30% A
	32 min	0% A
	35 min	0% A
	37 min	95% A
	40 min	95% A
Columns:	Analytical HPLC: Phenomenex Luna C8 10µm, 250 x 4.6 mm,	
	(Phenomenex Inc., Torrance, CA, USA)	
	Preparative HPLC:Phenomenex [®] Luna C8 10μm, 250mm x 21.2mm,	
	(Phenomenex Inc., Torrance, CA, USA)	

Acknowledgement: The authors thank J. Leiterer and F. Emmerling (BAM Federal Institute for Materials Research and Testing, 12489 Berlin) for the WAXS measurement (Figure SB1).